

Supporting the Changing Grid: Grid-Interactive Water Heaters

JEFFREY LIN 2015-03-13 Q2 PROJECT UPDATE

Stanford University

PG&E's 2013 - 2014 Residential Water Heater Strategy. at http://aceee.org/files/pdf/conferences/hwf/2013/4C-wilhelm.pdf>

Image from:

Outline

INTRODUCTION

HOW MANY WATER HEATERS ARE THERE?

HOW DO WATER HEATERS WORK?

VALUE, ABILITY, POLICY

PROJECT SUMMARY

STUDY OF GIWH SENSITIVITY TO CAPACITY AND TECHNOLOGY

LARGE CAPACITY VS SMALL CAPACITY

HEAT PUMP VS ELECTRIC RESISTANCE

VALUATION OF GIWH ENERGY STORAGE

NEXT STEPS

CONCLUSIONS AND PARTNERSHIPS

Electric water heaters are 200GW of opportunity on the grid

Resistance water heaters are prevalent...¹

Overall there are ~53 million electric water heaters, and ~4 million are replaced annually.

... in some regions where renewables penetration increases the need for ancillary services²

Stanford University

1 <u>http://www.eia.gov/consumption/residential/data/2005/hc/hc8waterheating/pdf/tablehc13.8.pdf</u> <u>http://c.ymcdn.com/sites/www.peakload.org/resource/resmgr/2014FallArchive/ConnettGIWH.pdf</u> (53m/4m)

2 http://www.nrdc.org/energy/renewables/energymap.asp

http://www.demandresponsedirectory.com/get_DRD_file.php?file=Emerging%20Market%20for%20Grid-Interactive%20Water%20Heating.pdf

How do electric (storage) water heaters work?

Sequentric/Vaughn: 3-element heater 100% eff; 1-2s

GE Appliances: Hybrid HP 200% eff; no DEC; 4HP = 1ER

Stanford University

Aquanta. Cool Technology for Hot Water. by Sunnovations — Kickstarter. at <a https://www.kickstarter.com/projects/651800236/aquanta-cool-technology-for-hot-water>
Eric Rehberg. Grid Interactive Water Heating. (2013). at <a http://aceee.org/files/pdf/conferences/hwf/2013/3C-rehberg.pdf>
Widder, S. H., Parker, G. B., Petersen, J. M. & Baechler, M. C. Demand Response Performance of GE Hybrid Heat Pump Water Heater. (Pacific Northwest National Laboratory, 2013). at <a http://www.pdf177.com/pdf/demand-response-performance-of-ge-hybrid-heat-pump-water-4612.pdf>

Water heating has remarkable thermal storage value

GIWH can load-shift in concentrated dispatch (VPP, DR)

... or they can provide regulation w/ <2s response

Stanford University

Eric Rehberg. Grid Interactive Water Heating. (2013). at <http://aceee.org/files/pdf/conferences/hwf/2013/3C-rehberg.pdf>

DOE Energy Conservation Standards require energy factor of \approx 2 for >55gal WH

• effectively only HPWH can meet these standards

NEEA HPWH tiers limit capability for hybrid electrical/resistive heating

- tiers can determine utility rebate; guide buying patterns
- effectively limiting hybrid HPWH use as GIWH

California CEC Title 24 may limit GIWH as replacements

Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Residential Water Heaters. at <http://www1.eere.energy.gov/buildings/appliance_standards/pdfs/water_heater_load_shift_rfi_notice_2012_06_06.pdf> Northern Climate Qualified Heat Pump Water Heaters Last updated November 13, 2014. (2014). at <http://neea.org/docs/default-source/northern-climate-heat-pump-water-heater-specification/qualified-products-list.pdf> A Specification for Residential Heat Pump Water Heaters Installed in Northern Climates Version 5.0. (2013). at <http://neea.org/docs/northern-climate-heat-pump-water-heater-specification/northern-climate-specification.pdf> Keith Dennis. GlWHs Waivers vs. Classification DOE and Congress. at <http://c.ymcdn.com/sites/www.peakload.org/resource/resource/resource/resource/northern.pdf>

RE: Ex Parte Communication, Docket EERE-2012-BT-STD-0022. (2014). at http://energy.gov/sites/prod/files/2014/09/f18/Ex_Parte_Communication_-_DOE_Water_Heater_Meeting_-_Sept212014_0.pdf Lewis PUD County HPWH Incentive Program. at http://cpud.org/assets/pdf/FY_2014HP_Water_Heater_rebate.pdf

What is the opportunity?

Opportunity:

This is a large, cheap energy storage resource Technically well-studied and known to work as a 1-4s resource Even more added value as utilities think about high renewable penetration and fuel switching

Challenges:

Current policy is led by individual efficiency directives, not overall grid efficiency
Policymakers don't have a good idea of whether grid services can also be provided by high efficiency water heating (either small capacity or heat pumps)
Technology is billed as a useful service to be sold by the utility—not as a competing technology as storage

Project summary: CAISO, 10,000 water heaters

80gal ER, $120^{\circ}F \pm 5^{\circ}F$: \$2.35M NPV

80gal **HP**, 120°F ± 5°F: -\$74K NPV

Project summary: CAISO vs PJM vs ERCOT

Objective 1: stochastic model of 100, 1000, 10000 WH

Value?	 Produce the first validation-ready model which focuses on modeling the capacity and ramping ability of a large fleet of water heaters, over different geographic zones
Inputs	 GridLAB-D code (up to date with both ER and HP WH, as provided by PNNL) Fleet location Validation: working with EPRI and DirectEnergy on obtaining time-series data
Task (code):	 Stochastically generate houses with random demands within a known climate (TMY climate data for PJM, MISO, ERCOT) Extend water heater code in GLD Implement DR signal code into GLD
Outputs	 Sensitivity study: given a temperature deadband, water heater capacity, and an ISO, amount of possible storage capacity over time Above for both resistance and heat pump WH

Objective 1: stochastic model of 100, 1000, 10000 WH Input parameters

Stochastically-generated water demand of a typical US home (200L/day) and TMY (typical meteorological year) climate data of cities in CAISO, PJM, ERCOT

100 generated homes:

Case 1: 80gal **HP and ER** water heaters, DR deadband of +/- 5°F **Case 2**: 60gal **HP and ER** water heaters, DR deadband of +/- 5°F **Case 3**: 80gal **HP and ER** water heaters, DR deadband of +/- 2.5°F

Apply a DR signal at a common time (first-order estimates of DR capability)

Case 1: total "storage" (kW-min) over 100 units

Case 1: 80gal **ER** water heaters, DR deadband of +/- 5°F, cumulative power profiles

Case 1: total "storage" (kW-min) over 100 units

Case 1: 80gal **HP** water heaters, DR deadband of +/- 5°F, cumulative power profiles Result is surprisingly similar, but scaled; HP takes into account ambient T for COP

Cumulative load added/shed over the last half of the day

Performance: electric resistance vs heat pump

Parameter	80gal, +/- 5F	HP 80gal, +/- 5F	60gal, +/- 5F	HP 60gal, +/- 5F	80gal, +/- 2.5F	HP 80gal, +/- 2.5F
Storage	154	44	145	28	118	40
based on discharge (kWh)	O H	verall, betwe IPWH—simila	en 3 to 5x les r to PNNL hai	s storage cap rdware study	acity for results	
Discharge rate (kW)	14	4	14.5	4	14.7	4
Discharge time (h)	11	11	10	7	8	10
Charge rate (kW)	430	91	425	90	430	90
Charge time (min)	9-10	16	7	12	2	3

New knowledge: 80gal vs 60gal vs deadband

Objective 2: valuation of water heaters on the grid

Objective 2: valuation of water heaters on the grid

Open Analytica® Optimizer E:\esvt_runs\ESVT_caiso2012_erwh.ana -	[Diagram - ESVT] 🛛 🗕 🗖 🗙
🗿 Eile Edit Object Definition Result Diagram Window Help	_ 8 ×
Open ► ESVT ►]
EPER ELECTRIC POWER Energy Storage Valuation Tool 4.0	Dispatch and Optimization Options
1. Select Storage Technology Performance and Costs	
Energy Storage System 10000 80gal EDWH T Discharge Duration (br) : 11	
Discharge Diacion (in): 11 Define Custom	Single/Multi-Year Optimization Single Year
System Capital Costs (\$): \$300,000 Discharge Capacity (KVV): 1400	Interpolation Method Compound Growth
2. Select Grid Services for Analysis	Early Year 2012 -
	Late Year N/A
3. Select System Energy Prices (not applicable to behind-the-meter services)	Spreadsheet Import and Export
Energy Price Selection, Early Year CAISO: 2012 Calc	
Energy Price Selection, Late Year N/A Calc Lenergy prices	Spreadsheet(s) and output details
4. Select Financial and Economic Assumptions	Case run status Calc
Ownership Type IOU To Discount Rate (%) 10.78%	
	Extras
5. View Results	Regression Tester Environmental Inputs
NPV Cost vs. Benefit Result Daily Revenue (\$) Result	
Annual Services Revenue (\$) Result Daily Dispatch (kWh) Result	Developed by
Financial Results Technical Results Results by Service Sensitivity Analysis Advanced Features	Energy+Environmental Economics
ð <	×

Objective 2: valuation of water heaters on the grid

From ESVT manual:

Category	Input			2020			:	2015
		Battery*	Flow Battery	PHS	AG CAES	СТ**	Battery	Flow Battery
	Nameplate Capacity (MW)	50	50	300	100	50	50	50
	Nameplate Duration (hr)	2	4	8	8	-	2	4
	Capital Cost (\$/kWh) -Start Yr Nominal	528	443	166	211	-	603	77
	Capital Cost (\$/kW) - Start Yr Nominal	1056	1772	1325	1684	1619	1206	3100
	Project Life (yr)	20	20	100	35	20	20	17
	Roundtrip Efficiency	83%	75%	82.50%	-	-	83%	709
	Variable O&M (\$/kWh)	0.00025	0.00025	0.001	0.003	0.004	0.00025	0.0002
Technology Cost /	Fixed O&M (\$/kW-yr)	15	15	7.5	5	17.4	15	1
Performance	Major Replacement Frequency	1	0	-	-	-	1	(
	Major Replacement Cost (\$/kWh)	250	-	-	-	-	250	-
	MACRS Depreciation Term (yr)	7	7	7	7	7	7	
	Energy Charge Ratio (CAES)	-	-	-	0.7	-	-	-
	Full Capacity Heat Rate (CAES/CT)	-			3810	9387	-	-
	Heat Rate Curve (CAES/CT)	-	-	-	see wkst	see wkst	-	-
	Turbine Efficiency Curve (PHS)	-	-	see wkst	-	-	-	-
	Pump Efficiency (PHS)	-	-	see wkst	-	-	-	-

Technology Type	Charging Ability (Electric Power)	Non-electric Fuel Use	Constrained Charging*	Constrained Discharging*
Battery/Flywheel	Yes	No	No	No
Pumped Storage	Yes	No	Yes	No
CAES	Yes	Yes	No	Yes
СТ	No	Yes	N/A	Yes

*Constraints include non-trivial start-up costs, start-up times, and minimum operating levels

This Guide generally presents one DA and one RT optimization formulation across all technologies. The next subsection defines the optimization problems for each technology separately in order to call attention to the key differences.

We have modeled the WH as a normal battery/flywheel, as heat inputs and constraints on charging are not required

Objective 2: valuation of water heaters on the grid Example parameters of 10000 ERWH, 80gal, 10 degree DR deadband

Parameter		
Maximum plant life (years)	15	
Discharge Capacity (kW)	1400	
Discharge Capacity (kVA)	1400	Technology/model
Discharge Duration (hours)	11	knowns
Depth of Discharge	1	
Charge Capacity (kW)	43000	
Annual decradation	Û	
AC-AC RT Eff	1.00	
Capital cost (\$)	10000 * \$30 = \$300K (\$214/kW)	Sensitive guesses
	$10000 \pm 6100 - 61000 / (6714/1-00)$	_
	$10000 ^{\circ} $ $100 = 1000 K (14/KW)$	
	(all presented results are at \$100/df	nit for comms)
Housekeeping power	10000 * \$100 = \$1000K (\$714/KW) (all presented results are at \$100/df 0	nit for comms)
Housekeeping power Capital cost (\$/kW)	(all presented results are at \$100/ur 0 0 as input; can vary as sensitivity	nit for comms)
Housekeeping power Capital cost (\$/kW) Capital cost (\$/kWh)	(all presented results are at \$100/df 0 0 as input; can vary as sensitivity 0 as input; can vary as sensitivity	nit for comms)
Housekeeping power Capital cost (\$/kW) Capital cost (\$/kWh) Variable O&M (\$/MWh)	10000 * \$100 = \$1000K (\$714/kW) (all presented results are at \$100/df 0 0 as input; can vary as sensitivity 0 as input; can vary as sensitivity 0 as input; can vary as sensitivity Assume 2.5 (similar to resource adeque	hit for comms) hacy cost)
Housekeeping power Capital cost (\$/kW) Capital cost (\$/kWh) Variable O&M (\$/MWh) Fixed O&M (\$/kW-year)	10000 * \$100 = \$1000K (\$714/kW) (all presented results are at \$100/uf 0 0 as input; can vary as sensitivity 0 as input; can vary as sensitivity Assume 2.5 (similar to resource adequates) Assume 28 (similar to resource adequates)	h it for comms) nacy cost) acy cost)
Housekeeping power Capital cost (\$/kW) Capital cost (\$/kWh) Variable O&M (\$/MWh) Fixed O&M (\$/kW-year) Technology replacement years	(all presented results are at \$100/df 0 0 as input; can vary as sensitivity 0 as input; can vary as sensitivity Assume 2.5 (similar to resource adequ Assume 28 (similar to resource adequ 15	nit for comms) nacy cost) acy cost)
Housekeeping power Capital cost (\$/kW) Capital cost (\$/kWh) Variable O&M (\$/MWh) Fixed O&M (\$/kW-year) Technology replacement years Battery replacement costs (\$/kWh)	10000 * \$100 = \$1000K (\$714/kW)(all presented results are at \$100/df00 as input; can vary as sensitivity0 as input; can vary as sensitivityAssume 2.5 (similar to resource adequance)1515 (not necessarily, assuming no batter)	h it for comms) hacy cost) acy cost) ery degradation)

Objective 2: valuation of water heaters on the grid 10000 80gal ERWH, CAISO

Small tanks can easily do regulation, and large tanks end up having quite some value as load-shifting. Also, this is CAISO... Stanford University

Objective 2: valuation of water heaters on the grid 10000 80gal ERWH, CAISO: daily revenue

Objective 2: valuation of water heaters on the grid Next steps:

- Better support chosen input parameters (though cost and discharge parameters seem within published experimental data)
 - Validation with time-series data from technology partners
- Regressions/sensitivity tests on all input parameters
- Close the loop: use output dispatch model and feed this back into WH model to ensure water heaters can match regulation signal without compromising quality

Conclusion

There is substantial value, especially now (technology is much cheaper than current lithium)

We wish to confirm our data with real time-series data

Extend value of storage to environmental results for a highlyrenewable grid

Additional research on retrofits vs new installs

Continuing research on behalf of CPAU/PJM

